Hydrogenic Plasmas in a Cold Hollow Cathode Brian A. Tom, Brett A. McGuire, Lauren E. Moore, Thomas J. Wood, Benjamin J. McCall Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign ## **EXPERIMENT** ### **Hollow Cathode** - •1.4 m copper cathode (1.5" OD) wrapped by 1/4" copper tube for cooling with a variety of media - •A water-cooled anode is located at the mid-point of the cathode - •Discharge is guided by a quartz tube to the interior of the cathode - Sealed with BaF₂ windows at Brewster's Angle Supports 1-2 sample gasses ### Difference Frequency Laser •Combine tunable Ti:Sapphire laser and fixed Nd:YAG laser in periodically poled lithium niobate (PPLN) crystal •Tunable between 2.8-4.8 µm #### White Cell - •Consists of three, 2 m radius of curvature gold mirrors - •Reflectance >95% between 630 nm and 10 µm - White cell provides 16+ m path length - •Output detected using DC indium-antimonide detector ## MOTIVATION H₃⁺ is a key constituent for much of the gasphase chemistry occurring in the interstellar medium (ISM). The *ortho*- and *para*- nuclear spin modifications of both H₂ and H₃⁺ are essentially separate chemical species, and their distribution is the source of two great astrochemical mysteries. temperature" of p*ara*-H₃+ and ortho-H₃+ in diffuse clouds 20-40 K lower than the temperature determined by other methods? 2) How does H₂, formed with an ortho:para ratio of 3:1, thermalize to nearly all para-H₂ in dense molecular clouds? The answers to these questions are hidden in the dynamics of the reaction $$H_3^+ + H_2 \rightarrow H_2 + H_3^+$$ which can change the spin modification of both molecules. Indeed, an understanding of this simple and most common bimolecular reaction in the universe is of fundamental importance. ## **THEORY** A reaction between H₃⁺ and H₂ can follow one of two pathways: proton hop or hydrogen exchange. - •Spin selection rules dictate only *para-H*₃ will initially form in a discharge of pure *para-H*₂ (Quack, Mol. Phys., 34, 477) - •In pure $para-H_2$, $para-H_3^+$ can be converted to $ortho-H_3^+$ only by the exchange reaction. A term used to compare these pathways is $\alpha = k_{hop}/k_{exchange}$. Hollow cathode measurements show $\alpha \sim 2.4$ at 300 K. (Cordonnier et al., J. Chem Phys, 113, 3181.) - •Starting with highly enriched *para-H*₂, any *ortho-H*₃⁺ present is therefore a direct measure of proton exchange. •In this manner α can be inferred. ### TEMPERATURE MEASUREMENTS - •Measured T_{excitation} T_{kinetic} and T_{rotational} - •Temperature was ~150 K - •We are still analyzing T_{rotational} which seems to be cooler than expected # $H_3^+ + H_2 \rightarrow H_2 + H_3^+$ Reaction Dynamics - •The para-H₃⁺ fraction (p₃) is dependent on the para-H₂ fraction (p₂) and temperature - α is also dependent on temperature; k_{exchange} dominates at low temperatures - Ratios of Ground State H₃⁺ and H₂ - Astronomical observations correlate with laboratory measurements - •This correlation is evidence that $H_3^+ + H_2 \rightarrow H_2 + H_3^+$ could be driving both the *para*- H_3^+ and *para*- H_2 fractions in the ISM Para- H₃⁺ and H₂ Fractions