

Hydrogenic Plasmas in a Cold Hollow Cathode

Brian A. Tom, Brett A. McGuire, Lauren E. Moore, Thomas J. Wood, Benjamin J. McCall Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign

EXPERIMENT

Hollow Cathode

- •1.4 m copper cathode (1.5" OD) wrapped by 1/4" copper tube for cooling with a variety of media
- •A water-cooled anode is located at the mid-point of the cathode
- •Discharge is guided by a quartz tube to the interior of the cathode
 - Sealed with BaF₂ windows at Brewster's Angle
 Supports 1-2 sample gasses

Difference Frequency Laser

•Combine tunable Ti:Sapphire laser and fixed Nd:YAG laser in periodically poled lithium niobate (PPLN) crystal
•Tunable between 2.8-4.8 µm

White Cell

- •Consists of three, 2 m radius of curvature gold mirrors
- •Reflectance >95% between 630 nm and 10 µm
- White cell provides 16+ m path length
- •Output detected using DC indium-antimonide detector

MOTIVATION

H₃⁺ is a key constituent for much of the gasphase chemistry occurring in the interstellar medium (ISM). The *ortho*- and *para*- nuclear spin modifications of both H₂ and H₃⁺ are essentially separate chemical species, and their distribution is the source of two great astrochemical mysteries.

temperature" of p*ara*-H₃+ and ortho-H₃+ in diffuse clouds 20-40 K lower than the temperature determined by other methods?

2) How does H₂, formed with an ortho:para ratio of 3:1, thermalize to nearly all para-H₂ in dense molecular clouds?

The answers to these questions are hidden in the dynamics of the reaction

$$H_3^+ + H_2 \rightarrow H_2 + H_3^+$$

which can change the spin modification of both molecules. Indeed, an understanding of this simple and most common bimolecular reaction in the universe is of fundamental importance.

THEORY

A reaction between H₃⁺ and H₂ can follow one of two pathways: proton hop or hydrogen exchange.

- •Spin selection rules dictate only *para-H*₃ will initially form in a discharge of pure *para-H*₂ (Quack, Mol. Phys., 34, 477)
- •In pure $para-H_2$, $para-H_3^+$ can be converted to $ortho-H_3^+$ only by the exchange reaction. A term used to compare these pathways is $\alpha = k_{hop}/k_{exchange}$. Hollow cathode measurements show $\alpha \sim 2.4$ at 300 K. (Cordonnier et al., J. Chem Phys, 113, 3181.)
- •Starting with highly enriched *para-H*₂, any *ortho-H*₃⁺ present is therefore a direct measure of proton exchange.

•In this manner α can be inferred.

TEMPERATURE MEASUREMENTS

- •Measured T_{excitation} T_{kinetic} and T_{rotational}
 - •Temperature was ~150 K
- •We are still analyzing T_{rotational} which seems to be cooler than expected

$H_3^+ + H_2 \rightarrow H_2 + H_3^+$ Reaction Dynamics

- •The para-H₃⁺ fraction (p₃) is dependent on the para-H₂ fraction (p₂) and temperature
- α is also dependent on temperature; k_{exchange} dominates at low temperatures

- Ratios of Ground State H₃⁺ and H₂
- Astronomical observations correlate with laboratory measurements
- •This correlation is evidence that $H_3^+ + H_2 \rightarrow H_2 + H_3^+$ could be driving both the *para*- H_3^+ and *para*- H_2 fractions in the ISM

Para- H₃⁺ and H₂ Fractions