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Ultrasensitive Infrared Spectroscopy of Molecular Ions

Motivations

● Atmospheric Chemistry: Molecular ions are the key players in the 
chemical and energetic balance in the ionosphere and auroral regions of 
Earth’s atmosphere and other planetary atmospheres.

● Combustion: Molecular ions are potential precursors to soot nucleation, 
and possible initiators of ignition outside of usual combustion conditions.

● Propulsion: Molecular ions represent attractive fuels for ion engines, as 
well as promising components of new high energy density materials.

● Astrochemistry: Molecular ions drive interstellar chemistry.

● Enabling Searches: Permits searches for molecular ions in the interstellar 
medium, planetary atmospheres, and combustion environments.

● Benchmarks for Theory: Spectroscopy is the gold standard for validating 
quantum chemical calculations.

Why Molecular Ions?

Why High-Resolution Spectroscopy?

Spectral identification of ion mass

Mass spectrometry of laser-probed ions

Compatible with cavity-enhanced spectroscopy

Ultra-narrow linewidth (kinematic compression)

Sub-Doppler linewidth

Low rotational temperature

Ion-neutral discrimination

High ion column density
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Two techniques have been widely 
used for molecular ion 

spectroscopy, but both have 
inherent limitations.

A versatile new technique for
high-resolution, low-temperature

molecular ion spectroscopy

We plan to study larger and more complex ions than can be studied in hot plasmas, 
including N5

+, H5O2
+, CH5

+, C2H5
+, C3H3

+, and C6H7
+.  We welcome input on what 

will be the best targets for supporting the Air Force mission!

Theoretical Support

Widicus Weaver, Woon, Ruscic, McCall, Astrophys. J. 697, 601 (2009) Mills, A. Perera, R. Bartlett, McCall, in prep

We have been collaborating with theorists to perform high-level 
ab initio calculations to help guide our experiments.
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Our initial test source is an 
uncooled cold cathode (adapted 
from a Saykally group design).

• Discharge current: ~1 mA
• Emission current: ~50 µA
• Beam current: ~1.5 µA (N2

+)
• Nozzle: 1 mm φ, Pierce

We are also developing and characterizing a 
continuous supersonic expansion discharge source 

for producing rotationally cold molecular ions.

ωTi =       nTi · ωrep +  2ωoffset + ωTi,beat

[ ωYAG =     nYAG ·ωrep +    ωoffset + ωYAG,beat ]

ωDFG = (nTi - nYAG) ωrep +    ωoffset + (ωTi,beat - ωYAG,beat)
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A pulse train of a stabilized fs laser 
is also an optical frequency comb.

Doubling the comb, and beating the 
two combs, yields the offset frequency.
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Beating the comb with a cw
laser yields a beat frequency.
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An Einzel lens is used to focus 
the ion beam from the source…

…then the beam is steered and “walked”
using a set of deflector plates…

…and a cylindrical bender turns 
it to overlap with the laser.
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• Tunable 2.8-4.8 µm
• Power > 0.5 mW
• Linewidth ~1 MHz

ortho-H3
+ para-H3

+

Cavity ringdown spectra of H3
+ in a 

supersonic expansion discharge source.

• Easy to implement (AOM, comparator)
• Min. detectable absorption (∆I/I)min ~ 10-7

• More involved (locking loop)
• (∆I/I)min ~ 10-7 / Finesse
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