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Reactions between H3
+ and H2 can proceed via 

two pathways: proton hop or hydrogen exchange.
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We used a supersonic ion source characterized 

by cavity-ringdown to produce H3
+ ions for a 

DR measurement at the TSR storage ring.
When used with 1:5 p-H2:Ar precursor gas, we 
measure a p-H3

+ fraction of 70.8% as 

compared to 47.9% with 1:5 n-H2:Ar.

Comparison of the low-energy region of 
the H3

+ DR rate coefficient measured with 
the expansion source with 1:5 n-H2: Ar 
(blue) and 1:5 p-H2: Ar (red) mixtures, 

respectively. The lower panel shows the 
extrapolated rate coefficients for p-H3

+

(red) and o-H3
+ (blue).
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H3
+ is the simplest polyatomic molecule.  It is 

widely used as a benchmark for theoretical 
calculations of molecular spectroscopy and 
reaction dynamics, and also plays a pivotal role 
as the cornerstone of  interstellar chemistry.

In Urbana, we have
investigated the
proton hop/ exchange
reaction 

H3
+ + H2 → H5

+ →H2+ H3
+

for the first time at low temperatures.  This 
reaction is the simplest bimolecular reaction 
involving a polyatomic, and is also the most 

common bimolecular reaction in the universe.  
Our experiments have revealed the branching 
ratio between proton hop and exchange, and 
may explain the observed ortho/para ratio of H3

+

in diffuse interstellar clouds.
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Nuclear spin and the low energy 
DR rate coefficient of H3

+

Cavity ringdown spectra recorded with 
n-H2:Ar (black) and p-H2:Ar (grey)

TSR storage ring /  MPI-K Heidelberg
Calculated DR rate coefficient

Fonseca dos Santos et al, JCP 127, 124309 (2007) 

The dissociative electron recombination  

H3
+ +e  → H2 + H or  H + H + H

is the dominant destruction mechanism for H3
+ in 

diffuse interstellar clouds. A strong dependence 

of the DR rate on nuclear spin might influence 
the para-H3

+ fraction observed in interstellar 
clouds. The Storage ring technique allows for 
high-resolution DR measurements.

State-of-the-art theoretical calculations show 
a strong nuclear spin effect at low 

temperatures. The predicted rate coefficient 
is more than an order of magnitude faster for 
para-H3

+ than for o-H3
+ at 10K. 
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Nuclear spin selection rules have an important 
influence on the branching ratio  α=khop/kexchange. 
For example: in a discharge of pure p-H2, the 
selection rules dictate that o-H3

+ can only be 

formed via the exchange pathway. Taking the 
selection rules and applying them to a steady-
state hydrogen plasma, we find for the p-H3

+

fraction
α+2α p2+1

p3 = 3α + 2

The best agreement between the modeling and diffuse cloud observations 

comes when Sid is 0.9 (corresponding to a “reactive” H3
+ + H2 rate 

coefficient of 1.5 x 10-10 cm3 s-1), and the ortho and para H3
+ electron 

recombination rate coefficients are held equal at 2.0 x 10-7 cm3 s-1 (upper 

left).

However, there is theoretical [1] and experimental [2] evidence that the 

electron recombination rate for para-H3
+ is faster than that of ortho-H3

+. 

Using the theoretical rate coefficients in [1], the p3 curve shifts downward, 

as expected for the higher p-H3
+ destruction rate. This curve cannot be 

brought into agreement with the observations even with Sid= 1. Note that 

all of this is insensitive to the value of αααα used. These efforts highlight the 

need for more conclusive experimental measurements of state-selective 

recombination rates to validate or invalidate this model.

Using the para-H3
+ formation and destruction reaction rates, we 

can predict the para-H3
+ fraction (p3) formed in a plasma of a 

certain para-H2 fraction (p2). We use the microcanonical statistical 

model of Park and Light [6] to calculate kxxxx rate coefficients, 

where the subscripts refer to the nuclear spin configurations of the 

(H3
+, H2) reactant and product pairs.

Line 1: p-H3
+ formation. Line 2: o-H3

+ + H2 � p-H3
+ +H2.

Line 3: o-H3
+ + H2 � p-H3

+ +H2. Line 4: p-H3
+ destruction via electron recombination
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