DAMOP/DAMPØ 2010 # Nuclear Spin Effects in the Reactions of H₃⁺ with H₂ and Electrons Holger Kreckel¹, Kyle Crabtree¹, Carrie Kauffman¹, Brian Tom¹, Nick Indriolo¹, Brett McGuire¹, Oldřich Novotný^{2,3}, Max Berg², Dennis Bing², Henrik Buhr², Annemieke Petrignani², Claude Krantz², Michael Lestinky^{2,3}, Mario Mendes², Christian Nordhorn², Julia Stützel², Richard Thomas⁴, Andreas Wolf², Benjamin McCall¹ ¹Departments of Chemistry and Astronomy, University of Illinois at Urbana-Champaign / ²Max-Planck-Institut für Kernphysik, Heidelberg, Germany ³Astrophysics Department, Columbia University, New York / ⁴Department of Physics, Stockholm University, Sweden ### $H_3^+ + H_2 \rightarrow H_2 + H_3^+$ Reaction Dynamics ### Motivation H₃⁺ is the simplest polyatomic molecule. It is widely used as a benchmark for theoretical calculations of molecular spectroscopy and reaction dynamics, and also plays a pivotal role as the cornerstone of interstellar chemistry. In Urbana, we have investigated the proton hop/ exchange reaction $$H_3^+ + H_2 \rightarrow H_5^+ \rightarrow H_2 + H_3^+$$ for the first time at low temperatures. This reaction is the simplest bimolecular reaction involving a polyatomic, and is also the most common bimolecular reaction in the universe. Our experiments have revealed the branching ratio between proton hop and exchange, and may explain the observed ortho/para ratio of H₃⁺ in diffuse interstellar clouds. ## **Steady State Modeling** Using the $para-H_3^+$ formation and destruction reaction rates, we can predict the $para-H_3^+$ fraction (p_3) formed in a plasma of a certain $para-H_2$ fraction (p_2) . We use the microcanonical statistical model of Park and Light [6] to calculate k_{xxxx} rate coefficients, where the subscripts refer to the nuclear spin configurations of the (H_3^+, H_2) reactant and product pairs. ### **Theory** Reactions between H₃⁺ and H₂ can proceed via two pathways: proton hop or hydrogen exchange. Nuclear spin selection rules have an important influence on the branching ratio $\alpha = k_{hop}/k_{exchange}$. For example: in a discharge of pure p-H₂, the selection rules dictate that o-H₃⁺ can only be formed via the exchange pathway. Taking the selection rules and applying them to a steady-state hydrogen plasma, we find for the p-H₃⁺ fraction $$p_3 = \frac{\alpha + 2\alpha p_2 + 1}{3\alpha + 2}$$ # $\frac{d}{dt}[p-H_3^+] = k_1 \left(\frac{2}{3}[o-H_2] + [p-H_2]\right)[p-H_2^+] + k_1 \left(\frac{1}{3}[o-H_2] + \frac{2}{3}[p-H_2]\right)[o-H_2^+]$ $$+ \left\{ (k_{oopp} + k_{oopo})[o\text{-H}_2] + (k_{oppp} + k_{oppo})[p\text{-H}_2] \right\} [o\text{-H}_3^+]$$ $$- \left\{ (k_{poop} + k_{pooo})[o\text{-H}_2] + (k_{ppop} + k_{ppoo})[p\text{-H}_2] \right\} [p\text{-H}_3^+]$$ $$- k_{r(para)}[e_r^-][p\text{-H}_3^+],$$ Line 1: $p - H_3^+$ formation. Line 2: $o - H_3^+ + H_2 \rightarrow p - H_3^+ + H_2$. Line 3: $o-H_3^+ + H_2 \rightarrow p-H_3^+ + H_2$. Line 4: $p-H_3^+$ destruction via electron recombination The best agreement between the modeling and diffuse cloud observations comes when S^{id} is 0.9 (corresponding to a "reactive" $H_3^+ + H_2$ rate coefficient of 1.5 x 10^{-10} cm³ s⁻¹), and the *ortho* and *para* H_3^+ electron recombination rate coefficients are held equal at 2.0 x 10^{-7} cm³ s⁻¹ (upper left). However, there is theoretical [1] and experimental [2] evidence that the electron recombination rate for $para-H_3^+$ is faster than that of $ortho-H_3^+$. Using the theoretical rate coefficients in [1], the p_3 curve shifts downward, as expected for the higher $p-H_3^+$ destruction rate. This curve cannot be brought into agreement with the observations even with $S^{id}=1$. Note that all of this is insensitive to the value of α used. These efforts highlight the need for more conclusive experimental measurements of state-selective recombination rates to validate or invalidate this model. [1] Fonseca dos Santos et al, JCP 127, 124309 (2007) [2] Kreckel et at., PRA, accepted # Dissociative Recombination (DR) of H₃⁺ at the TSR storage ring #### Motivation The dissociative electron recombination $$H_3^+ + e \rightarrow H_2 + H \text{ or } H + H + H$$ is the dominant destruction mechanism for H₃⁺ in diffuse interstellar clouds. A strong dependence of the DR rate on nuclear spin might influence the para-H₃⁺ fraction observed in interstellar clouds. The Storage ring technique allows for high-resolution DR measurements. TSR storage ring / MPI-K Heidelberg ## **Theory** State-of-the-art theoretical calculations show a strong nuclear spin effect at low temperatures. The predicted rate coefficient is more than an order of magnitude faster for para-H₃⁺ than for o-H₃⁺ at 10K. Calculated DR rate coefficient Fonseca dos Santos et al, JCP 127, 124309 (2007) ### Measurement We used a supersonic ion source characterized by cavity-ringdown to produce H_3^+ ions for a DR measurement at the TSR storage ring. When used with 1:5 p- H_2 :Ar precursor gas, we measure a p- H_3^+ fraction of 70.8% as compared to 47.9% with 1:5 n- H_2 :Ar. Cavity ringdown spectra recorded with n-H₂:Ar (black) and p-H₂:Ar (grey) Comparison of the low-energy region of the H_3^+ DR rate coefficient measured with the expansion source with 1:5 n- H_2 : Ar (blue) and 1:5 p- H_2 : Ar (red) mixtures, respectively. The lower panel shows the extrapolated rate coefficients for p- H_3^+ (red) and o- H_3^+ (blue). Nuclear spin and the low energy DR rate coefficient of H₃⁺